Transcranial magnetic stimulation of visual area V5 in migraine.

نویسندگان

  • Lorella Battelli
  • Kristin R Black
  • Shirley H Wray
چکیده

OBJECTIVE To examine visual cortical excitability in persons with migraine using transcranial magnetic stimulation (TMS) over an extrastriate area of the brain, area V5. BACKGROUND Previous studies found that persons with migraine have a lower phosphene threshold than healthy control subjects with TMS delivered over the primary visual cortical area V1. The result suggests that the occipital cortex in migraineurs between migraine attacks is hyperexcitable. However, it is not known whether interictal cortical hyperexcitability is also present in areas of the association visual cortex. METHOD To investigate this, single-pulse TMS was delivered over visual area V5, the motion cortex, to 16 persons with migraine and visual aura, nine migraineurs without visual aura, and 16 healthy control subjects. TMS was delivered at intensities ranging from 30 to 100% of maximum stimulator output or until the participant reported seeing phosphenes (visual illusions characterized by flashes of light). Thresholds to phosphenes were obtained for each participant using a staircase procedure. RESULT Significantly lower phosphene thresholds for TMS delivered over V5 were found in migraineurs as compared with control subjects. Qualitatively, the migraineurs' experience of phosphenes were more vivid, florid, and sustained compared with that of control subjects. CONCLUSION Results of this study indicate that hyperexcitability of the visual cortex in migraine goes beyond visual area V1 and demonstrates for the first time a significant difference in threshold for excitability of visual area V5 in persons with migraine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of global form and motion in migraineurs

Previous studies have identified anomalies of cortical visual processing in migraineurs that appear to extend beyond V1. Migraineurs respond differently than controls to transcranial magnetic stimulation of V5, and can demonstrate impairments of global motion processing. This study was designed to assess the integrity of intermediate stages of both motion and form processing in people with migr...

متن کامل

The neural basis of the Enigma illusion: a transcranial magnetic stimulation study.

The aim of this study was to test the role of the visual primary (V1) and the middle temporal area (V5/MT) in the illusory motion perception evoked by the Enigma figure. The Enigma figure induces a visual illusion that is characterized by apparent rotatory motion in the presence of a static figure. By means of repetitive transcranial magnetic stimulation (rTMS) we show that V5/MT is causally li...

متن کامل

Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A.

In this report, we evaluate the role of visual areas responsive to motion in the human brain in the perception of stimulus speed. We first identified and localized V1, V3A, and V5/MT+ in individual participants on the basis of blood oxygenation level-dependent responses obtained in retinotopic mapping experiments and responses to moving gratings. Repetitive transcranial magnetic stimulation (rT...

متن کامل

Citation for Published Item: Use Policy the Interaction of Brain Regions during Visual Search Processing as Revealed by Transcranial Magnetic Stimulation. Stockton-on-tees Ts17 6bh

Although it has long been known that right posterior parietal cortex (PPC) has a role in certain visual search tasks, and human motion area V5 is involved in processing tasks requiring attention to motion, little is known about how these areas may interact during the processing of a task requiring the speciality of each. Using transcranial magnetic stimulation (TMS), this study first establishe...

متن کامل

Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex.

The precise role of frontal eye fields (FEF) in vision independent of their role in eye movements remains a matter of debate. One proposal is that the FEF exert top-down influences on the extrastriate visual cortex prior to eye movement preparation. Here we establish, by use of transcranial magnetic stimulation (TMS), that activity in the human FEFs has a direct effect on the sensitivity of ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurology

دوره 58 7  شماره 

صفحات  -

تاریخ انتشار 2002